Abstract
AbstractThe current study deals with the effects of Newtonian cooling, magnetic field, and nonlinear radiation on the flow of a Jeffrey fluid along with thermal dispersion and homogeneous‐heterogeneous reaction towards a stagnation point. The developed governing equations are transformed into nondimensional equations employing suitable similarity transformations along with their related boundary conditions. To solve and analyze these equations, the BVP4C solver of MATLAB has been used. The various properties of the fluid flow such as velocity, temperature, and concentration are represented in their respective graphs. The values obtained for skin friction and Nusselt number are expressed in the form of a table. The important outcomes of the present study are that the velocity declines as we increase the melting parameter, magnetic parameter, and Prandtl number. The temperature profile increases with radiation parameter, heat source, and magnetic number. An inclination is seen in the concentration of the fluid with a rise in Schmidt number whereas declination is seen with a rise in the homogeneous reaction parameter. Also, a comparison Table 1 has been made with the previous work under limited conditions. The table shows that the current work justifies the previous work system under those conditions. The present model can be utilized for many industrial purposes. Large‐scale industries like plastic and food processing industries can utilize these results to enhance their productivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.