Abstract
An original experimental device coupled with an optimization technique, for determining the thermal diffusivity (αdiff) of solid materials, has been devised and experimentally validated. The inverse problem of the classical Fourier heat equation in transient condition is numerically supervised by an optimization procedure for the initial and boundary conditions from measurements. Imperfect adiabaticity on the insulated lateral surfaces is explained by modeling heat loss correction functions with additional time dependent Robin conditions. The optimization model identifies the optimal values of the heat transfer coefficients and of αdiff by minimizing the residual function between the model predictions and the experimental data. Incorporating the heat loss corrections in the solution of the heat equation significantly improves the estimation of the αdiff. Indeed, the time profile of the surface temperatures measured for a specimen of PPMA material is well reflected by the simulated curves. The estimated αdiff is in good agreement with an experimental inter-comparison of eleven laboratories equipped with Laser Flash, hot disk, and hot bridge certified devices. Our results reveal a reliable capability of the model to identify the αdiff value that explains the functional dependence underlying the experimental observations. The error lies in the range 5% or 34%, depending on whether the heat losses are accounted or not.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.