Abstract

A linear stability of freely propagating, adiabatic premixed flames is investigated in the context of a thermal-diffusive or constant density model, together with a simple two-step chain-branching model of the chemistry. This study considers the case of realistic, finite activation energy of the chain-branching step, and emphasis is on comparing with previous high activation energy asymptotic results. It is found that for realistic activation energies, a pulsating instability is absent in regimes predicted to be unstable by the asymptotic analysis. For the cellular instability, however, the finite activation energy results are in qualitative agreement with the asymptotic results, in that the flame is unstable only below a critical Lewis number of the fuel and becomes more unstable as the Lewis number is decreased. However, it is shown that very high activation energies would be required for the asymptotic analysis to be quantitatively predictive. The flame is less unstable for finite activation energies t...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.