Abstract
We developed a thermal diffusion forced Rayleigh scattering (TDFRS) setup operating at a writing wavelength of 980 nm, which corresponds to an absorption band of water with an absorption coefficient of approximately 0.5 cm(-1). Therefore, aqueous mixtures require no dye to convert the light into heat energy. Especially for aqueous system with a complex phase behavior such as surfactant systems, the addition of a water soluble dye can cause artifacts. The infrared-TDFRS (IR-TDFRS) setup has been validated for water/ethanol mixtures with water weight fractions c = 0.5-0.95 and in a temperature range between T = 15 degrees C to T = 35 degrees C. Comparison with literature data shows an excellent agreement. The addition of a small amount (c(dye) approximately 10(-6) wt) of adsorbing dye at the writing wavelength allows also the investigation of organic mixtures. We investigated the three binary mixtures of dodecane, isobutylbenzene, and 1,2,3,4-tetrahydronaphthalene at a weight fraction of c = 0.5 at a temperature of 25 degrees C and found good agreement with the Soret coefficients, which had been obtained in a benchmark test under the same conditions. Therefore, the presented setup is suitable for the investigation of the thermal diffusion behavior in aqueous and organic mixtures, and in the case of aqueous systems, the addition of a dye can be avoided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.