Abstract

The objective of present work is to study the thermo diffusion effect on an unsteady simultaneous convective heat and mass transfer flow of an incompressible, electrically conducting, heat generating/absorbing fluid along a semi-infinite moving porous plate embedded in a porous medium with the presence of pressure gradient, thermal radiation field and chemical reaction. It is assumed that the permeable plate is embedded in a uniform porous medium and moves with a constant velocity in the flow direction in the presence of a transverse magnetic field. It is also assumed that the free stream consists of a mean velocity, temperature and concentration over which are super imposed an exponentially varying with time. The equations of continuity, momentum, energy and diffusion, which govern the flow field, are solved by using a regular perturbation method. The behavior of the velocity, temperature, concentration, Skin-friction, rate of heat transfer and rate of mass transfer has been discussed for variations in the physical parameters. An increase in both Pr and R results a decrease in thermal boundary layer thickness. However, concentration decreases as Kr, Sc increase but it increases with an increase in both So and δ.

Highlights

  • The study of magneto hydrodynamic flows through porous media is of considerable interest because of its abundant applications in several branches of science and technology; such as in astrophysical, geo-physical problem and in developing magnetic generator for obtaining electrical energy at minimum cost

  • Motivated by the above studies, in this paper we have considered thermo diffusion effect on an unsteady simultaneous convective heat and mass transfer flow of an incompressible, electrically conducting, heat generating/absorbing fluid along a semi-infinite moving porous plate embedded in a porous medium with the presence of pressure gradient, thermal radiation field and chemical reaction

  • In order to assess the accuracy of the numerical results, we have compared our results with accepted data sets for the velocity, temperature and concentration profiles for a stationary vertical porous plate corresponding to the case computed by Kim (2000). i.e., in the absence of the diffusion effects we observed that the effects of all parameters on velocity and temperature profiles are in good agreement with the comparison of Kim (2000)

Read more

Summary

Introduction

The study of magneto hydrodynamic flows through porous media is of considerable interest because of its abundant applications in several branches of science and technology; such as in astrophysical, geo-physical problem and in developing magnetic generator for obtaining electrical energy at minimum cost. Unsteady MHD free convection and chemically reactive flow past an infinite vertical porous plate was studied by Raju et al [11]. Ablel-Rahman [15] studied the thermal diffusion effect on MHD combined free forced convection and mass transfer flow of a viscous fluid through a porous medium with heat generation. Sarma et al [17] studied MHD free convection and mass transfer flow past an accelerated vertical plate with chemical reaction in presence of radiation. Motivated by the above studies, in this paper we have considered thermo diffusion effect on an unsteady simultaneous convective heat and mass transfer flow of an incompressible, electrically conducting, heat generating/absorbing fluid along a semi-infinite moving porous plate embedded in a porous medium with the presence of pressure gradient, thermal radiation field and chemical reaction.

Mathematical Analysis
Solution of the Problem
Results and Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call