Abstract

We have theoretically investigated the role of thermal diffusion and chemical kinetics as a possible dynamic explanation for the preferential ablative properties of infrared radiation from a free-electron laser (FEL). The model is based on a laminar system composed of alternating layers of protein and saline. We have compared exposure to 3 microm where water is the main absorber and 6.45 microm where both water and protein absorb. The picosecond pulses of the superpulse are treated as a train of impulses. We find that the heating rates are sufficient to superheat the outer saline layers on the nanosecond time scale, leading to explosive vaporization. We also find that competition between the layer-specific heating rates and thermal diffusion results in a wavelength-dependent separation in layer temperatures. We consider the onset of both chemical bond breaking and the helix-coil transition of protein prior to vaporization in terms of the thermal, chemical, and structural properties of the system as well as laser wavelength and pulse structure. There is no evidence for thermal bond breaking on these time scales. At 6.45 microm, but not 3 microm, there is evidence for a significant helix-coil transition. While the native protein is ductile, the denatured protein exhibits brittle fracture. This model provides a dynamic mechanism to account for the preferential ablative properties observed with FEL radiation tuned near 6.45 microm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.