Abstract

We investigated the heat resistance of a four-strain mixture of Escherichia coli O157:H7 in raw ground beef in both the absence and presence of white and green tea powders and an apple skin extract. Inoculated meat was cooked using the sous-vide technique, i.e., the meat was packaged in sterile bags and completely immersed in a circulating water bath at low temperature for a period of time. The bags were cooked for 1 h to an internal temperature of 55, 58, 60, or 62.5 degrees C, and then held from 240 min at 55 degrees C to 10 min at 62.5 degrees C. The surviving bacteria were enumerated by spiral plating onto tryptic soy agar overlaid with sorbitol-MacConkey agar. Inactivation kinetics of the pathogens deviated from first-order kinetics. D-values (time, in minutes, required for the bacteria to decrease by 90%) in the control beef ranged from 67.79 min at 55 degrees C to 2.01 min at 62.5 degrees C. D-values determined by a logistic model ranged from 36.22 (D1, the D-value of a major population of surviving cells) and 112.79 (D2, the D-value of a minor subpopulation) at 55 degrees C to 1.39 (D1) and 3.00 (D2) at 62.5 degrees C. A significant increase (P < 0.05) in the sensitivity of the bacteria to heat was observed with the addition of 3% added antimicrobials. D-value reductions of 62 to 74% were observed with apple powder and 18 to 58% with tea powders. Thermal death times from this study will assist the retail food industry to design cooking regimes that ensure the safety of beef contaminated with E. coli O157:H7.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call