Abstract

The engine size of modern passenger transport aircraft is principally determined by take-off conditions, since initial acceleration requires maximum engine power. An electromagnetic launch (EML) system could provide some or all of the energy required at takeoff so that the aircraft engine power requirement and fuel consumption may be significantly reduced. So far, EML for aircraft has been adopted only for military applications to replace steam catapults on the deck of aircraft carriers. This paper will describe the potential application of EML to propel civil aircraft on the runways of modern airports. A comparison of synchronous and asynchronous electrical motor systems designed to launch an A320-200 sized aircraft is presented. The paper also describes a solution of the transient heat transfer problem applied to the conductive components of EML systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.