Abstract

Compact heat exchangers such as tube-fin types and plate-fin types are widely used for gas-liquid or gas-gas applications. Some examples are air-coolers, fan coils, regenerators and recuperators in micro-turbines. In this study, thermal design of fin-and-tube (tube-fin) heat exchanger performance with fins being employed outside and inside tubes was presented, with which designed plate-fin heat exchanger was compared. These designs were performed under identical mass flow rate, inlet temperature and operating pressure on each side for recuperator in 100kW microturbine as well as specified allowable fractions of total pressure drop by means of Log-Mean Temperature Difference (LMTD) method. Heat transfer areas, volumes and weights of designed heat exchangers were evaluated. It is shown that, under identical heat duty, fin-and-tube heat exchanger requires 1.8 times larger heat transfer area outside tubes and volume, 0.6 times smaller heat transfer area inside tubes than plate-fin heat exchanger. Under identical total pressure drop, fin-and-tube heat exchanger requires about 5 times larger volume and heat transfer area in gas-side, 1.6 times larger heat transfer area in air-side than plate-fin heat exchanger. Total weight of fin-and-tube heat exchanger is about 2.7 times higher than plate-fin heat exchanger, however, the heat transfer rate of fin-and-tube heat exchanger is about 1.4 times larger than that of plate-fin heat exchanger. It is indicated that, both-sides finned tube heat exchanger may be used in engineering application where the total pressure drop is severe to a small fraction and the operating pressure is high, and may be adopted for recuperator in microturbine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call