Abstract

This work aims to assess and optimize the performance of cascade high-temperature heat pump (HTHP) integrated with district heating (DH) to produce 1 MW steam at 160 °C for the industrial processes. The heat available in the primary loop of the DH network at 80 °C is considered as the heat source; which is cooled down 70 °C through the HTHP evaporator, before supplying the DH secondary loop. The use of alternative hydrocarbons in the low-temperature loop are examined; and considering the gas compressor limitation, the HTHP performance of using each refrigerant is optimized and compared to each other.The optimization results reveal that pentane- hydrocarbon with the highest critical temperature- is the most promising refrigerant to be paired with steam in the high-temperature loop, reaching the highest COP of 2.66. However, concerning safety and compressor sizing issues, butane is an excellent candidate; with volumetric heating capacity (VHC) of about two times more than that of pentane, in the expense of just about 4 % reduction in the HTHP COP. In addition, water injection theoretically controls the steam compressor discharge temperature successfully, with just 0.9 K superheating at the compressor outlet; and reduces its power consumption and the HTHP COP up to 4.3 % and 1.7 %, respectively. Moreover, techno-economic analysis demonstrates that the HTHP technology shows a better business case compared to the conventional natural gas and electric boilers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.