Abstract

To ensure high-resolution image acquisition for a spaceborne parabolic synthetic aperture radar (SAR) antenna, an appropriate thermal design is important to minimize the thermal distortion of the antenna reflector in severe on-orbit thermal environments. This paper describes the results of a preliminary thermal design and the analysis of a carbon fiber reinforced plastic skin-based unfurlable parabolic reflector for use in a spaceborne SAR antenna. The effectiveness of passive thermal designs for an antenna reflector using different thermal coatings was investigated with on-orbit thermal analyses according to the various antenna look angles to derive the most suitable design for minimizing the thermal gradient of the reflector. This contributes to minimize loss in antenna gain to ensure the SAR performance. In addition, the influence of the solar panel on the thermal gradient of the reflector was also analyzed because it is also important in affecting the thermal distortion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call