Abstract

AbstractPost rigor bovine M. semimembranosus was analysed by differential scanning calorimetry (d.s.c.). After extractive removal of sarcoplasmic proteins, subsequent pH adjustment and manual connective tissue removal, d.s.c. yielded reproducible thermograms which permitted investigation of the individual major myofibrillar proteins in various pH and salt environments without prior isolation. The positions of two major peaks, interpreted as myosin transitions, proved to be strongly pH dependent. At pH 5.4, the peak maxima occurred at 58 and 65°C, respectively, at a heating rate of 10°C min‐1. Above pH 6.5 their order of denaturation was reversed. In the pH range 5.4–6.5 the peak ascribed to actin had its maximum near 80°C in intact muscle. Above this pH range it was displaced to lower temperature. The thermal stability of actin was studied after treatment of the muscle tissue with different salt solutions. At equal ionic strengths (μ = 0.15) at pH 5.5, calcium chloride and sodium chloride caused 6.5°C and 4°C displacement to lower temperature, respectively. The thermograms of bovine semimembranosus muscle were compared to those of two red and two white muscle types (bovine cardiac and rabbit soleus muscles, chicken breast and rabbit semimembranosus muscles, respectively) at two pH levels. Greater myosin differences were found between red and white muscles than between muscles from different animal species. All muscles gave similar actin transitions, with exception of the heart muscle where the actin peak appeared at 3 °C lower temperature. The necessity of a strict pH control in order to obtain reproducible muscle thermograms is demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.