Abstract

The temperature dependences of the emission characteristics of semiconductor lasers based on MOVPE-grown asymmetric separate-confinement heterostructures (wavelengths λ = 1010–1070 nm) have been studied. It was found that, in the continuous-wave mode, the main mechanism of “saturation” of the light-current characteristic with increasing temperature of the active region is carrier delocalization into the waveguide layer. It was experimentally demonstrated that the thermal delocalization of carriers depends on the energy depth of the quantum well (QW) in the active region. It is shown that the minimum internal optical loss at 140°C is obtained in laser structures with the largest energy depth of the QW of the active region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.