Abstract

AbstractThe degradation of isotactic polypropylene in the range 390–465°C was studied using factor‐jump thermogravimetry. The degradations were carried out in vacuum and at pressures of 5 and 800 mm Hg of N2, flowing at 100–400 standard mL/s. At 800 mm Hg this corresponds to linear rates of 1–4 mm/s. In vacuum bubbling in the sample caused problems in measuring the rate of weight loss. The apparent activation energy was estimated as 61.5 ± 0.8 kcal/mol (257 ± 3 kJ/mol). In slowly flowing N2 at 800 mm Hg pressure the activation energy was 55.1 ± 0.2 kcal/mol (230 ± 0.8 kJ/mol) for isotactic polypropylene and 51.1 ± 0.5 kcal/mol (214 ± 2 kJ/mol) for a naturally aged sample of atactic polypropylene. For isotactic polypropylene degrading at an external N2 pressure of 5 mm Hg the apparent activation energy was 55.9 ± 0.3 kcal/mol (234 ± 1 kJ/mol). A simplified degradation mechanism was used with estimates of the activation energies of initiation and termination to give an estimate of 29.6 kcal/mol for the ß‐scission of tertiary radicals on the polypropylene backbone. Initiation was considered to be backbone scission ß to allyl groups formed in the termination reaction. For initiation by random scission of the polymer backbone, as in the early stages of thermal degradation, an overall activation energy of 72 kcal/mol is proposed. The difference between vacuum and in‐N2 activation energies is ascribed to the latent heat contributions of molecules which do not evaporate as soon as they are formed. At these imposed rates of weight loss the average molecular weights of the volatiles in vacuum and in 8 and 800 mm Hg N2 are in the ratios 1–1/2–1/9.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call