Abstract
Thermal degradation mechanisms of solid electrolyte interphases (SEIs) on graphite and SiO electrodes are examined at moderately elevated temperatures (60–130°C). Of the two possible degradation mechanisms, the attack of phosphorus pentafluoride (PF5), which is generated by thermal decomposition of lithium hexafluorophosphate (LiPF6) used as the lithium salt, dominates over the thermal decomposition of the SEI layer itself over this temperature range. Once the SEI layer is damaged, electrolyte decomposition and film deposition takes place on the newly exposed electrode surfaces due to the loss of passivating ability; this is a repair process for the damaged SEI. Such damage/repair of the SEI layer continues until the Li+ ions/electrons are exhausted from the negative electrodes. An undesired feature of this process is the steady increase in SEI thickness, which causes electrode polarization and eventual capacity fading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.