Abstract

As vertical modified in-situ retorts (VMIS) have been scaled up and tested, the overall oil yield has declined and is generally lower than that observed in an above-ground process. This reduced oil yield could adversely affect the economics of VMIS retorting. Diminished yields are attributed to a combination of factors associated with scale-up such as in complete rubblization, wide particle size distributions (large blocks of shale), and poor flow distributions. Additionally, oil losses can occur by comparatively long exposure of the oil vapours to high temperatures, by exposure to successive condensation and revaporization of the oil as it travels down the retort, and finally by long time thermal exposure of the condensed oil retained in the bottom portion of large VMIS retorts. To study such vapour phase degradation of shale oil using oil produced from Occidental Petroleum's No. 6 VMIS retort, a tubular continuous flow reactor, with an on-line gas chromatograph for gas composition monitoring was used to study thermal degradation of shale oil under retorting conditions. Oil and a combination of gases including steam were metered into the preheater and then the vapours passed into a quartz tubular reactor where the temperature and residence time of the gaseous mixture were controlled. Complete mass balances were performed giving the weight fraction of oil converted to noncondensable hydrocarbon gases and coke. This experimental design is novel because high temperature thermal degradation of shale oil was studied for the first time under steady state flow conditions with carefully controlled residence time and temperature. A range of temperatures (425–625 °C) and residence times (2–10 s) were used in a series of factorial-designed experiments (3 2) to accurately determine the effects of these variables. Results of the study showed that the addition of steam to the carrier gas did not reduce oil degradation losses but did react with the coke thereby changing the product gas composition and quantity. A first-order oil degradation rate expression was used to model the rate of oil loss. The calculated activation energy was 17.3 kcal mol −1. Chemical analyses of the product liquids and gases confirmed previously reported findings that the oil loss indices (alkene/alkane, ethylene/ethane, naphthalene/( C 11 + C 12), and gas/coke) increase with increasing oil degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call