Abstract
Degradation of heavy pyrolytic oil obtained from a commercial rotary kiln pyrolysis plant for municipal plastic waste was conducted in batch and continuous reaction systems. The experiment was conducted by temperature programming with a 10 °C/min heating rate up to 450 °C and then maintained for a specific time at 450 °C. The product oil was sampled at different degradation temperatures with a specific interval of elapsed time of reaction. In this study, the characteristics of product oil obtained in both batch and continuous reaction systems were compared, according to degradation temperature and elapsed time at 450 °C. Raw pyrolytic oil showed a wide boiling point distribution from around 10 carbon number to about 35 and a high heating value, relative to of those of commercial oils (gasoline, kerosene, and diesel). In the two reaction systems, the characteristics of product oils were influenced by degradation temperature and elapsed time. Moreover, heavy hydrocarbons showed greater cracking at high degradation temperature and long elapsed time into light hydrocarbons as gasoline components range. Also, the continuous reaction system showed different characteristics of product oil, compared with those of the batch reaction system, such as the cumulative amount distribution, production rate, and carbon number distribution of the product oil, as a function of degradation temperature and elapsed time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.