Abstract

The effect of reaction time and mechanical stirring on thermal degradation of high density polyethylene(HDPE) was studied at 350°C under nitrogen atomosphere in a batch pressure reactor. Changes in molecular weight(MW), molecular weight distribution (MWD), and crystalline behaviors of the degraded products were investigated by gel chromatography (GPC) and differential scanning calorimetry (DSC). It was found that MWD curves all shifted toward lower molecular weight with increasing reaction time, with both the extent of the movement and its showing a rapid initial drop and then leveling off. In a short period of reaction time, the MW, MWD and crystalline behaviors of the degraded products were affected notably by the mechanical stirring. The of the degraded products without stirring was lower than that of products with stirring in the same time, which should be related to the large difference of temperature distributions in the reactor. When the reaction time reached 4 h, the of the degraded products had dropped to about 5 × 103g/mol from about 3 × 105g/mol for the original , and the product did not show the melting and crystallization behaviors of high density polyethylene again.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call