Abstract
In this paper, the thermal degradation of laterally operating thermal actuators made from electroplated nickel has been studied. The actuators investigated delivered a maximum displacement of ca. 20 mum at an average temperature of ~ 450degC , which is much lower than that of typical silicon-based microactuators. However, the magnitude of the displacement strongly depended on the frequency and voltage amplitude of the pulse signal applied. Back bending was observed at maximum temperatures as low as 240degC. Both forward and backward displacements increase as the applied power was increased up to a value of 60 mW; further increases led to reductions in the magnitudes of both displacements. Scanning electron microscopy clearly showed that the nickel beams began to deform and change their shape at this critical power level. Compressive stress is responsible for nickel pileup, while tensile stresses, generated upon removing the current, are responsible for necking at the hottest section of the hot arm of the device. Energy dispersive X-ray diffraction analysis also revealed the severe oxidation of Ni structure induced by Joule heating. The combination of plastic deformation and oxidation was responsible for the observed thermal degradation. Results indicate that nickel thermal microactuators should be operated below 200degC to avoid thermal degradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.