Abstract

Amine-based absorption/stripping is one of the promising technology for CO2 capture from natural and industrial gas streams. During the process, amines and CO2 undergo irreversible reactions to produce undesired compounds, which cause corrosion, foaming, increased viscosity and breakdown of equipment, ultimately contributing to the economic loss and environmental pollution. In this study, the thermal degradation of aqueous diethanolamine in the presence and absence of dissolved CO2 was investigated. The experiments were performed in stainless steel cylinders. The results show that thermal degradation in the absence of CO2 was a slow process; triethanolamine, and tris(2-aminoethyl)amine were only the degradation products identified in the mixture In addition, the rate of degradation was very low, only 3% degradation was observed after 4 weeks. But in the presence of CO2, sixteen degradation products were identified, nine of which were new degradation products reported for the first time in this study. The 3-(2-hydroxyethyl)-2-oxazolidinone, 1,4-bis(2-hydroxyethyl)piperazine and triethanolamine were the most abundant degradation products. The remaining DEA concentration after 4 weeks was about 20% of the total amine concentration. The most probable degradation reactions and their mechanisms are also proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call