Abstract

The thermal degradation behavior of novel ultra-fire-resistant polymers and copolymers containing deoxybenzoin units in the backbone was studied by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The polymers were synthesized by the polycondensation of 4,4′-bishydroxydeoxybenzoin (BHDB) with isophthaloyl chloride (to give polyarylates), phenylphosphonic dichloride (to give polyphosphonates), and their mixtures (to give poly(arylate- co-phosphonate) copolymers). The thermal decomposition, under nitrogen conditions, of BHDB-polyarylate was characterized by a simultaneous degradation of both the bisphenolic (deoxybenzoin) and isophthalate sub-units, whereas a three-step decomposition phenomenon was observed for the BHDB-polyphosphonate. BHDB-polymers containing phosphonate groups in the backbone did not show any phosphorus-based volatile decomposition products, whereas the corresponding bisphenol A-based polyphosphonates released volatile decomposition products comprised mainly of phosphorus-containing compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.