Abstract

Oil shortage and awareness of environment pollution leads to the extensive use of biodegradable starch-based materials against synthetic plastics. The accumulated wastes of these plastics takes more time for natural recycling and the process is complex. Therefore the best option of recycling would be to convert these polymers into a source of energy by pyrolysis. So to understand the pyrolytic behaviour, kinetics of such waste plastics is studied by using thermogravimetric analysis at different heating rates of 10 °C, 20 °C, 40 °C, 60 °C, 80 °C and 100 °C in nitrogen atmosphere followed by characterization of the pyrolysis products. The kinetic parameters are obtained for two major stages of decomposition in two different temperature ranges 250–620 °C and 620–855 °C by iso-conversional methods such as Friedman, Coats-Redfern, FWO and Kissinger methods. The regression coefficient data (>0.9) of kinetic plots obtained for different methods best fits to the kinetic equation. Empirical formula of the compound is determined by ultimate analysis is CH2.214S0.0018O0.6910. Proximate analysis gives the idea of volatile component which is74.33%. The range of average value of activation energy is 120.7013 kJ/mol to 140.7707 kJ/mol for the biodegradable plastic plate with different conversion (0.1–0.6) and (0.1–0.3) respectively at two different temperatures. The pyrolysis products obtained using a semi-batch reactor are characterized to know their composition and other properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call