Abstract

The effect of process conditions on the rate of thermal degradation of concentrated, aqueous piperazine (PZ) was investigated. At 150 °C, 8 m (m) PZ degrades with a first order rate constant, k1, of 6.1 × 10–9 s–1. Thermal degradation of 8 m PZ with 0.3 mol CO2/mol alkalinity demonstrated an Arrhenius dependence on temperature with an activation energy of 184 kJ/mol. Degradation at 175 °C was negligible with no dissolved CO2, while the k1 increased from 65 to 71 × 10–9 s–1 at 0.1 to 0.4 mol CO2/mol alkalinity and decreased to 24 × 10–9 s–1 at 0.47 mol CO2/mol alkalinity. In an industrial system with a simple stripper, losses due to thermal degradation are expected to be 0.043 mmol PZ/mol CO2 captured. In the case of a 2-stage flash, losses are expected to be only 0.0086 mmol PZ/mol CO2 captured. A Maximum Estimated Stripper Temperature (MEST) was calculated for a variety of amines to provide the same thermal degradation rate of MEA at 120 °C based on first order rate constants for amine loss during thermal degradation and the expected Arrhenius dependence on temperature for all amines. Substituted and unsubstituted 6-member amine rings were found to be the most thermally stable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call