Abstract

Abstract The effect of thermal exposure on the microstructure and tensile stress–strain behaviour has been investigated for composites of woven continuous oxide fibres (Nextel 720) in a porous aluminosilicate matrix. The tensile tests were carried out on straight-sided, centre hole notched plates with 0/90° and ±45° orientations. The as-received material was slightly notch sensitive in that the net section fracture stress decreased somewhat with increasing hole diameter but much less than predicted for an ideally elastic, fully notch-sensitive material. After exposure at 1100 °C and for long time at 1000 °C in air the composite was embrittled. In the 0/90 composite this resulted in a reduced fracture strength, a reduced strain to failure as well as a reduced fracture toughness and damage zone size. After exposure for 100 h at 1100 °C (the most extreme exposure applied) the material also became significantly more notch sensitive and had failure characteristics similar to those of a monolithic ceramic. The ±45 composite was also embrittled which resulted in a reduced strain to failure but an increase in fracture strength. Density measurements and observations on the microstructure and fracture surfaces indicated that the embrittlement was due mainly to localised densification of the matrix and an increase in fibre/matrix bonding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call