Abstract

AbstractThe kinetic parameters of the thermal degradation of sepiolite were evaluated with a new method based on thermal analysis data. Thermogravimetric/differential thermal analysis curves were recorded for the natural and preheated sepiolite samples in the temperature range 25–800°C for 4 h. The temperature-dependent height of the exothermic heat flow peak for the thermal decomposition of sepiolite located at ~850°C on the differential thermal analysis curve was taken as a kinetic variable for the thermal degradation. A thermal change coefficient was defined depending on this variable because this coefficient fit to the Arrhenius equation was assumed as a rate constant for the thermal degradation. The Arrhenius plot showed that the degradation occurs in three steps. Two of these are due to stepwise dehydration and the third originated from dehydroxylation of sepiolite. Three activation energies were obtained that increase with the increasing temperature interval of the steps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.