Abstract

AbstractA series of polyesters were synthesized by reacting structurally differing aromatic diols with either saturated (flexible) or unsaturated (rigid) dicarboxylic acid halide by a stirred interfacial polycondensation technique. Thermal degradation kinetics of these polyesters were investigated by applying Coats–Redfern and Horowitz–Metzger nonisothermal procedures. The dynamic thermogravimetry experiments were conducted in nitrogen to obtain differential thermogravimetric plots. Thermal stability of these polyesters was discussed on the basis of semiquantitative methods such as differential procedural decomposition temperature, integral procedural decomposition temperature, and fraction decomposition temperature (e.g., 10% DT). Degradation proceeded in multiple stages. The thermal degradation patterns and activation energies in these stages were discussed in relation to central bridging moieties of aromatic diol. The activation energies of these polyesters were found to be in the range of 100 to 200 kJ/mol. The effect of spacer type on activation energy was also reported. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 784–792, 2005

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.