Abstract

In this article, thermal degradation behavior of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB)-based plastic-bonded explosives (PBXs) bonded with a different fluoropolymer matrices namely indigenous poly(vinylidene fluoride-chlorotrifluoroethylene) (FKM), FK 800, fluoroplastic F-32L and fluororubber SKF 32 was investigated through non-isothermal thermogravimetric analysis (TG) technique under nitrogen atmosphere. It was observed that the mass loss of PBXs containing FKM and FK 800 matrices occurred in three steps. The mass loss of PBXs containing fluoroplastic F-32L and fluororubber SKF 32 occurred in two steps. Kinetics were investigated through non-isothermal TG at different heating rates for the first step of degradation by means of model-free Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS) methods. The activation energies calculated by applying FWO method are in good agreement and very close to those obtained by KAS method. The results revealed that the effect of the polymer matrices on the thermal degradation reaction of TATB was significantly observed especially different outcomes of kinetic parameters. The reaction models for degradation were also studied by Criado method. The reaction models are probably best described by the power law and diffusion models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call