Abstract

Pyrolysis is a promising treatment for soil remediation for rapidity and fertility preservation. But it is difficult to establish the relationship between pyrolysis behaviors and soil organic matter (SOM) structures, for SOM is a mixture of heterogeneous compounds. HA sub-fractions from the same soil source may provide a series of promising objects to understand SOM at molecular level and the resulting patterns in SOM pyrolysis. We first propose a novel insight into pyrolysis mechanism response to molecular signatures using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) combined with thermogravimetric analysis (TGA) to study six humic acid (HA) sub-fractions extracted from a forest soil. The findings indicate that decomposition of soil HA occurs systematically due to molecular signatures. The decomposition can be categorized as carboxyl controlled (below 280 °C), lipid-dominated (280–450 °C) and condensed aromatics-dominated processes (450–700 °C). Predominant reaction mechanism of all HA sub-fractions was random nucleation (α > 0.25). Lipid in HA tend to initiate multiple nuclei in thermal degradation, while condensed aromatics tend to initiate and grow centering single random point in higher conversion rate (α > 0.75). Bridging the molecular signature and thermogravimetry reveals that the pyrolysis stage below 350 °C should be divided into two distinct processes related to the carboxylic group and lipid compounds, although this stage has conventionally been considered as a single process. The N element of HA was mostly preserved in the condensed aromatics which was mainly pyrolyzed above 450 °C, suggesting that pyrolysis below 450 °C is a preferable remediation treatment considering nitrogen fertility preservation. The observed molecular-level pyrolysis patterns can be applied as a targeted remediation procedure for contaminated soils and can improve the understanding of SOM thermal behaviors at the molecular level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.