Abstract

AbstractThe thermal degradation behavior of styrene‐butadiene‐styrene triblock copolymer (SBS) and SBS/multiwalled carbon nanotubes (MWCNTs) composites prepared by solution processing and melt mixing, respectively, was investigated using nonisothermal thermogravimetric analysis (TGA). The kinetic parameters of the activation energy (Ea) for degradation, preexponential factor A, and the reaction order (n) were evaluated by the Flynn‐Wall‐Ozawa, Kissinger, and Coats‐Redfern methods, respectively. Ea increased and n decreased after the incorporation of 3 wt % of MWCNTs into the SBS. The Ea of SBS/MWCNTs composite prepared by melt mixing was higher than that by solution processing, which was attributed to the good dispersion of MWCNTs in SBS and the interactions between MWCNTs and SBS. The gases evolved during thermal degradation at a nitrogen atmosphere were studied by Fourier transform infrared spectroscopy (FTIR) coupled with the TGA. Aliphatic and aromatic CH peaks appeared simultaneously in FTIR spectra, indicating the thermal degradation of SBS proceeds by a random chain scission process. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.