Abstract

This paper describes the thermal properties of polymeric porous microspheres that contain a natural wood-derived polymer, lignin, as one of the components. Polymeric microspheres were obtained by the reaction of divinylbenzene (DVB) or bisphenol A glycerolate diacrylate (BPA.DA) with styrene (St) and a lignin component. The lignin components were unmodified lignin (L), lignin esterified with acrylic acid (LA) or lignin initially reacted with epichlorohydrin and then with acrylic acid (LEA). The copolymers were obtained by emulsion-suspension polymerization at a constant mole ratio of the tetrafunctional monomer DVB or BPA.DA to styrene St (1:1w/w) and different types of lignin components. The thermal stabilities and degradation behavior of the obtained microspheres were studied by a thermogravimetric (TG/DTG/DSC) analysis. The evolved gases were analyzed by FTIR spectrometry. The influence of the lignin component on thermal properties of the obtained polymeric microspheres is evaluated and discussed. Due to the presence of the specific functional groups and well-developed porous structure, the obtained lignin-containing microspheres have a potential application as specific sorbents. Based on the high char content during the pyrolysis, the copolymers containing the lignin additives can be also considered as potential precursors for preparation of carbon materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.