Abstract

Indium nitride (InN) is an interesting material for future electronic and photonic-related applications, as it combines high electron mobility and low-energy band gap for photoabsorption or emission-driven processes. In this context, atomic layer deposition techniques have been previously employed for InN growth at low temperatures (typically <350 °C), reportedly yielding crystals with high quality and purity. In general, this technique is assumed to not involve any gas phase reactions as a result from the time-resolved insertion of volatile molecular sources into the gas chamber. Nonetheless, such temperatures could still favor the precursor decomposition in the gas phase during the In half-cycle, therefore altering the molecular species that undergoes physisorption and, ultimately, driving the reaction mechanism to pursue other pathways. Thence, we herein evaluate the thermal decomposition of relevant In precursors in the gas phase, namely, trimethylindium (TMI) and tris(N,N'-diisopropyl-2-dimethylamido-guanidinato) indium (III) (ITG), by means of thermodynamic and kinetic modeling. According to the results, at T = 593K, TMI should exhibit partial decomposition of ∼8% after 400s to first generate methylindium and ethane (C2H6), a percentage that increases to ∼34% after 1h of exposure inside the gas chamber. Therefore, this precursor should be present in an intact form to undergo physisorption during the In half-cycle of the deposition (<10s). On the other hand, the ITG decomposition starts already at the temperatures used in the bubbler, in which it slowly decomposes as it is evaporated during the deposition process. At T = 300 °C, the decomposition is a fast process that reaches 90% completeness after 1s and where equilibrium, at which almost no ITG remains, is achieved before 10s. In this case, the decomposition pathway is likely to occur via elimination of the carbodiimide ligand. Ultimately, these results should contribute for a better understanding of the reaction mechanism involved in the InN growth from these precursors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.