Abstract

The citrate precursor method has been used to synthesise ultrafine SrFe12O19. The thermal decomposition of citrate precursor SrFe12O6 (C6H6O7)13 was investigated by TG, DTG and DTA techniques, gas and chemical analyses. The citrate precursor on decomposition in static air atmosphere yields pure and stoichiometric SrFe12O19. The decomposition consists of three major steps, the formation of acetone dicarboxylate complex occurs around 165°C. The citrate groups are completely destroyed in the temperature range 195–315°C resulting in the formation of complex carbonate with the evolution of acetone and CO2 gas. The decomposition of carbonate results in the formation of ultrafine SrFe12O19 below 550°C with the evolution of CO2 gas. The ultrafine particles are observed as platelet clusters having crystallite size 13 nm and surface area 76.4 m2 g−1. The citrate precursor and the decomposed products were characterised by IR, NMR, XRD, SEM and surface area measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call