Abstract

The adsorption and thermal reaction of NH 3 on the Si(1 0 0) surface are investigated by high-resolution core-level photoemission spectroscopy using synchrotron radiation. The existence of different reaction products and their chemical bonding configurations at different substrate temperatures are revealed from N 1s and Si 2p core-level spectra. We clearly identified a series of Si–NH 2, Si 2NH and Si 3N species in N 1s spectra indicating a successive N–H bond dissociation during thermal decomposition. The depth distribution and the population changes of each N species with annealing suggest that (i) the intermediate Si 2NH species include insertion into the back-bond site between the first and the second Si layers as well as bridging Si dimer site and (ii) the fully dissociated N atoms are incorporated into the Si subsurface layers first. At a high temperature above 900 K, the incorporated N atoms partly segregate back to the surface to form stoichiometric silicon nitride patches. The Si 2p core levels consistently show progressive changes in subnitride formation and the liberation of H atom upon increase of annealing temperature. The implication of the present result on the proposed reaction mechanism is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.