Abstract

The mineral metatorbernite, Cu[(UO 2 ) 2 (PO 4 )] 2 ·8H 2 O, has been studied using a combination of energy dispersive X-ray analysis, X-ray diffraction, dynamic and controlled rate thermal analysis techniques. X-ray diffraction shows that the starting material in the thermal decomposition is metatorbernite and the product of the thermal treatment is copper uranyl phosphate. Three steps are observed for the dehydration of metatorbernite. These occur at 138°C with the loss of 1.5 moles of water, 155°C with the loss of 4.5 moles of water, 291°C with the loss of an additional 2 moles of water. These mass losses result in the formation of four phases namely meta(II)torbernite, meta(III)torbernite, meta(IV)torbernite and anhydrous hydrogen uranium copper pyrophosphate. The use of a combination of dynamic and controlled rate thermal analysis techniques enabled a definitive study of the thermal decomposition of metatorbernite. While the temperature ranges and the mass losses vary from author to author due to the different experimental conditions, the results of the CRTA analysis should be considered as standard data due to the quasi-equilibrium nature of the thermal decomposition process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.