Abstract

The thermal decomposition of furan has been studied by a 1 mm x 2 cm tubular silicon carbide reactor, C(4)H(4)O + Delta --> products. Unlike previous studies, these experiments are able to identify the initial furan decomposition products. Furan is entrained in either He or Ar carrier gas and is passed through a heated (1600 K) SiC tubular reactor. Furan decomposes during transit through the tubular reactor (approximately 65 micros) and exits to a vacuum chamber. Within one nozzle diameter of leaving the nozzle, the gases cool to less than 50 K, and all reactions cease. The resultant molecular beam is interrogated by photoionization mass spectroscopy as well as infrared spectroscopy. Earlier G2(MP2) electronic structure calculations predicted that furan will thermally decompose to acetylene, ketene, carbon monoxide, and propyne at lower temperatures. At higher temperatures, these calculations forecast that propargyl radical could result. We observe all of these species (see Scheme 1). As the pressure in the tubular reactor is raised, the photoionization mass spectra show clear evidence for the formation of aromatic hydrocarbons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.