Abstract

The thermal decomposition of CuProp2 in the form of film and powder was studied in different atmospheres by means of thermal analysis techniques (TG-MS, TG-IR, EGA), chemical-structural methods (FTIR, XRD, EA) and computational thermochemistry (VASP/PBE). The decomposition mechanism in terms of volatiles evolved was disclosed with the aid of ab-initio modeling; it was found to be dependent on the gas diffusion in and out of the sample and accelerated by a humid atmosphere. In films, the copper redox behavior showed sensitivity to the residual atmosphere. Finally, the role of the metal center is discussed in the frame of a general decomposition mechanism for metal propionates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.