Abstract

This article reports on the synthesis of high surface area (563m2/g) beta-SiC nanorods by thermal decomposition of commercial silicone oil at a relatively low reaction temperature (800 degrees C) in a closed Swagelok cell. High yield (75%) of SiC nanorods are obtained in this one-stage, solvent-, catalyst-, and template-free synthesis technique that runs at a relative low temperature and employs cheap single-precursor. The morphological (TEM, HR-SEM), compositional (CHNS, EDX, SAEDX]), structural (XRD, HR-TEM, and ED), thermal (TGA) characterizations and surface area analysis are carried out for the obtained SiC nanorods. The possibility of hydrogen storage in this high surface area nano-SiC rods are also tested and reported for the first time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.