Abstract

The thermal decomposition of an ammonium dinitramide-based energetic compound was conducted for the first time using a dispersive inductively coupled plasma mass spectrometer, DTA-TG analysis, and pyrolysis at a constant temperature. A liquid droplet was injected over synthesized CuO catalytic particles deposited on lanthanum oxide-doped alumina. The thermal behavior of the ADN liquid monopropellant revealed that decomposition in the presence of catalytic particles occurs in two distinct steps, with the majority of ejected gases being detected in real-time analysis using the DIP-MS technique. At a temperature of 280 °C, pyrolysis confirmed the catalytic decomposition behavior of ADN, which occurred in two distinct steps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.