Abstract

2,2′,4,4′,6,6′-Hexanitrostilbene (HNS) is an explosive with increased heat resistance, and its mechanism of thermal decomposition is of interest. In this paper, the decomposition processes of HNS at various temperatures (2500, 2750, 3000, 3250, and 3500 K) are calculated by large-scale reactive molecular dynamics simulations. The initial reactions and the evolution of clusters (whose molecular weight is larger than HNS) are analyzed. The reaction kinetics parameters are fitted. The results show that the main initial decomposition mechanisms of HNS are C–NO2 bond dissociation and nitro-nitrite (NO2–ONO) isomerization. During decomposition, O atoms are less likely to be released from the cluster than H and N atoms. Low temperatures tend to produce larger clusters, and clusters at higher temperatures tend to decompose. The thermal decomposition of HNS is a combination of single-molecule and bimolecular decomposition mechanisms. The dimerization reaction is clearly weakened, and the C–N bond cleavage is still...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.