Abstract

ReaxFF-low-gradient reactive force field with CHONAl parameters is used to simulate thermal decomposition of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) and AlH3 composite. Perfect AlH3 and surface-passivated AlH3 particles were constructed to mix with HMX. The simulation results indicate HMX is adsorbed on the surface of particles to form O–Al and N–Al bonds. The decomposition of HMX and AlH3 composite is an exothermic reaction without energy barrier, but the decomposition of pure HMX needs to overcome the energy barrier of 133.57 kcal/mol. Active nano-AlH3 causes HMX to decompose rapidly at low temperature, and the primary decomposition pathway is the rupture of N–O and C–N bonds. Adiabatic simulation shows that the energy release and temperature increase of HMX/AlH3 is much larger than those of the HMX system. Surface-passivated AlH3 particles only affect the initial decomposition rate of HMX. In HMX and AlH3 composites, the strong attraction of Al in AlH3 to O and the activation of the intermediate reaction by H2 cause HMX to decompose rapidly. The final decomposition products of pure HMX are H2O, N2, and CO2, and those of HMX/AlH3 are H2O, N2, and Al-containing clusters dominated by C–Al. The final gas production shows that the specific impulse of HMX/AlH3 is larger than that of HMX.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.