Abstract

Thermal analysis techniques such as thermogravimetric analysis (TGA) have been widely used because they provide rapid quantitative determination of various processes under isothermal or non-isothermal conditions. It allows the estimation of effective kinetic and thermodynamic parameters for various decomposition and thermal reactions. In this article, thermal degradation of sodium carboxymethyl cellulose (SMC) is investigated by means of dynamic thermogravimetric/derivative thermogravimetry (TG/DTG) in helium atmosphere with the flow rate 100 mL/min at the heating rate of 10-30 °C/min until the furnace wall temperature reached 700 °C. The non-isothermal degradation of SMC found to be taking place occurred major one step and minor two steps. Using a non-isothermal kinetic method based on a TGA data, kinetic parameters ( E and ln A ) are calculated by Kissinger-Akahira-Sunose (KAS), Flynn-Wall-Ozawa (FWO) and Friedman methods. The results of studied polymer demonstrated that E and ln A is varied with function of conversion (α), which is in good agreement with literature data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call