Abstract

Thermal degradation of PVC and acacia wood flour (with and without silane treatment) composites was studied by using TGA in nitrogen atmosphere. The wood flour was varied from 10 to 30 % within the PVC matrix. Thermal stability of the composites increased with increase in percentage of wood flour at higher temperature. The thermal stability of the silane treated microcellular composites (SPVC) was found to be greater than that of the untreated (UPVC) one. It was also strengthened by the higher activation energy of the silane treated composites for 30 % (SPVC30) and 10 wt% (SPVC10) filler loading (210 and 187 kJ mol−1) in comparison to that of UPVCs (185 and 161 kJ mol−1) respectively. The isothermal degradation and thermodynamic parameters were also studied and found that the isothermal stability with time, entropy change (ΔS) and enthalpy change (ΔH) increased with increase in wt% of UPVCs and SPVCs . The values of ΔH were recorded as 534 and 452 kJ mol−1 for SPVC30 and SPVC10, which were highest among all the composites. It proved the better thermal stability of silane treated over the untreated microcellular composites. The values of Gibb’s free energy (ΔG) decreased as the filler content increased from 10 to 30 wt% filler loading, which supports the above said statements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.