Abstract

Abstract A new non-isothermal method of kinetic analysis was employed to investigate the thermal decomposition kinetic modeling of the basic carbonate cobalt nanosheets (n-BCoC) synthesized from spent lithium-ion batteries (LIBs). Fraser–Suzuki function was applied to deconvoluting overlapping complex processes from the overall differential thermal curves obtained under the linear heating rate conditions, followed by the kinetic analysis of the discrete processes using a new kinetic analysis method. Results showed that the decomposition of n-BCoC in air occurred through two consecutive reactions in the 136–270 °C temperature intervals. Decomposition started by hydroxide component (Co(OH)2) decomposition until to 65% and simultaneously carbonate phase decarbonation began. The process was continued by CO2 evolution and finally carbonate cobalt nanosheets have been produced. The reaction mechanism of the whole process can be kinetically characterized by two successive reactions: a phase boundary contracting reaction followed by an Avrami–Erofeev equation. Mechanistic information obtained by the kinetic study was in good agreement with FT-IR (Fourier transform infrared spectroscopy) and SEM (scanning electron microscopy) results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.