Abstract

ABSTRACTAs a continuation of the previous study on the thermal degradation behavior of tobacco stem, this work is focused on the kinetics of pyrolytic decomposition. Thermogravimetric analysis of tobacco stem samples was conducted under nitrogen atmosphere at different heating rates of 5, 10, 15, and 20°C/min at a temperature range of 25–1,000°C. The kinetic parameters, such as activation energy, pre-exponential factor, and reaction order, were determined by applying the Coats–Redfern method for the main pyrolysis occurred in the second zone by means of the decomposition of hemicellulose, cellulose, and lignin at a temperature range 180–540°C. In addition, the activation energy was calculated using various degradation models, including Kissinger, Friedman (FR), Flynn–Wall–Ozawa (FWO), and Kissinger–Akahira–Sunose (KAS). The average activation energy of tobacco stem was calculated to be 150.40, 230.76, 216.97, and 218.56 kJ/mol by the Kissinger, FR, FWO, and KAS models, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.