Abstract
AbstractPoly(ethylene 2,6‐naphthalate) (PEN) nanocomposites reinforced with silica nanoparticles were prepared by direct melt compounding. Dynamic thermogravimetric analysis was conducted on the PEN/silica nanocomposites to clarify the effect of silica nanoparticle on the thermal decomposition behavior of the resultant nanocomposites. There is a significant dependence of thermal decomposition behavior for PEN/silica nanocomposites on the content of silica nanoparticles and heating rate. The variation of the activation energy for thermal decomposition reflected the improvement of the thermal stability of the PEN/silica nanocomposites. The unique characteristics of silica nanoparticles resulted in physical barrier effect against the thermal decomposition, leading to the enhancement of the thermal stability of the PEN/silica nanocomposites. The incorporation of silica nanoparticles into the PEN matrix increased the storage modulus of the PEN/silica nanocomposites and made it possible for them to sustain higher modulus at higher temperature relative to pure PEN. POLYM. COMPOS., 2009. © 2009 Society of Plastics Engineers
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.