Abstract

AbstractThe thermal decomposition behavior and kinetic parameters of the exothermic decomposition reactions of the title compound in a temperature‐programmed mode have been investigated by means of DSC, TG‐DTG and lower rate Thermolysis/FTIR. The possible reaction mechanism was proposed. The critical temperature of thermal explosion was calculated. The influence of the title compound on the combustion characteristic of composite modified double base propellant containing RDX has been explored with the strand burner. The results show that the kinetic model function in differential form, apparent activation energy Ea and pre‐exponential factor A of the major exothermic decomposition reaction are 1‐a,207.98 kJ*mol−1 and 1015.64 s−1, respectively. The critical temperature of thermal explosion of the compound is 312.87 C. The kinetic equation of the major exothermic decomposition process of the title compound at 0.1 MPa could be expressed as: dα/dT=1016.42 (1–α)e‐2.502×104/T As an auxiliary catalyst, the title compound can help the main catalyst lead salt of 4‐hydroxy‐3,5dinitropyridine oxide to enhance the burning rate and reduce the pressure exponent of RDX‐CMDB propellant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call