Abstract

The standard theoretical estimation of the thermal dark matter abundance may be significantly altered if properties of dark matter particles in the early universe and at the present cosmological epoch differ. This may happen if, e.g., a cosmological phase existed in the early universe during which dark matter particles were temporarily unstable and their abundance was reduced through their decays. We argue that a large class of microscopic theories which are rejected due to the dark matter overproduction, may actually be viable theories if certain macroscopic conditions were satisfied in the early universe. We explicitly demonstrate our mechanism within the minimal supersymmetric standard model with the bino-like lightest supersymmetric particle being a phenomenologically viable dark matter candidate under the condition that the early universe carried a global R-charge which induced the instability phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.