Abstract

There are numerous potential sources of thermal damage encountered in orthopaedic surgery. An understanding of the preclinical mechanisms of thermal damage in tissues is necessary to minimize iatrogenic injuries and use these mechanisms therapeutically. Heat generation is a phenomenon that can be used to a surgeon's benefit, most commonly for hemostasis and local control of tumors. It is simultaneously one of the most dangerous by-products of orthopaedic techniques as a result of burring, drilling, cementation, and electrocautery and can severely damage tissues if used improperly. Similarly, cooling can be used to a surgeon's advantage in some orthopaedic subspecialties, but the potential for harm to tissues is also great. Understanding the potential of a given technique to rapidly alter local temperature-and the range of temperatures tolerated by a given tissue-is imperative to harness the power of heat and cold. In all subspecialties of orthopaedic surgery, thermal damage is a relevant topic that represents a direct connection between preclinical and clinical practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.