Abstract

Sn-3.0Ag-0.5Cu (SAC305) alloy is the most widely used solder in electronic assemblies. However, issues associated with cost and drop/shock durability have resulted in a search for alternative lead-free solder alloys. One approach to improve the drop/shock reliability has been to reduce the silver content in Sn-Ag-Cu alloys. Another approach is doping Sn-Ag-Cu solder with additional elements. In 2008, the International Electronics Manufacturing Initiative (iNEMI) started the “Characterization of Pb-Free Alloy Alternatives” project to provide a comprehensive study of 15 tin-based solder interconnect compositions benchmarked against the eutectic tin-lead solder. For this study, temperature cycle durability was the primary focus and solders were selected to study the effect of varying silver content, microalloy additions, and aging. This paper reports the findings from one of the test conditions conducted under the iNEMI project. The cycles to failure for a temperature cycling test condition from −15°C to 125°C, with dwell times of 60 min at both extremes, are presented. The test assembly consisted of 16 of the 192 I/O BGAs and 16 of the 84 I/O BGAs soldered onto an LG451HR laminate. Test results revealed that the reduction of silver resulted in a reduction in cycles to failure. In all cases, the 15 tin-based solders were more durable than the eutectic SnPb solder. Aging at 125°C for 10 d did not affect the cycles to failure in SAC105 solder; however, the cycles to failure decreased with aging in SAC305 solder. In addition, aging resulted in a wider distribution of cycles to failure in 192 I/O BGAs. Failure analysis was carried out on all solder materials to identify the failure site and failure mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call