Abstract

One of the most important issues whether anisotropic conductive film (ACF) interconnection technology is suitable to be used for flip chip on organic board applications is thermal cycling reliability. In this study, thermally induced deformations and warpages of ACF flip chip assemblies as a function of distance from neutral point (DNP) and ACF materials properties were investigated using in situ high sensitivity moire´ interferometry. For a nondestructive failure analysis, scanning acoustic microscopy investigation was performed for tested assemblies. To elucidate the effects of ACF material properties and DNP on the thermal cycling reliability of ACF assembly, Weibull analysis for the lifetime estimation of ACF joint was performed, and compared with thermal deformations of ACF flip chip assembly investigated by moire´ interferometry. Results indicate that the properties of ACF have a significant role in the thermal deformation and reliability performance during thermal cycling testing. Therefore, optimized ACF properties can enhance ACF package reliability during thermal cycling regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call